मराठी

Evaluate Each of the Following Integral: ∫ π 2 − π 2 Cos 2 X 1 + E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx\]
बेरीज

उत्तर

\[\text{Let I} =\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x}{1 + e^x}dx.................\left(1\right)\]

Then,

\[I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}{1 + e^\left[ \frac{\pi}{2} + \left( - \frac{\pi}{2} \right) - x \right]}dx ........................\left[ \int_a^b f\left( x \right)dx = \int_a^b f\left( a + b - x \right)dx \right]\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 \left( - x \right)}{1 + e^{- x}}dx\]
\[ = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{e^x \cos^2 x}{e^x + 1}dx .................... \left( 2 \right)\]
Adding (1) and (2), we get
\[2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{\cos^2 x}{1 + e^x} + \frac{e^x \cos^2 x}{1 + e^x} \right)dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \frac{\cos^2 x\left( 1 + e^x \right)}{1 + e^x}dx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos^2 xdx\]
\[ \Rightarrow 2I = \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( \frac{1 + \cos2x}{2} \right)dx\]

\[\Rightarrow 2I = \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} dx + \frac{1}{2} \int_{- \frac{\pi}{2}}^\frac{\pi}{2} \cos2xdx\]
\[ \Rightarrow 2I = \left.\frac{1}{2} \times x\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} + \frac{1}{2} \left.\times \frac{\sin2x}{2}\right|_{- \frac{\pi}{2}}^\frac{\pi}{2} \]
\[ \Rightarrow 2I = \frac{1}{2}\left[ \frac{\pi}{2} - \left( - \frac{\pi}{2} \right) \right] + \frac{1}{4}\left[ \sin\pi - \sin\left( - \pi \right) \right]\]
\[ \Rightarrow 2I = \frac{1}{2} \times \pi + \frac{1}{4}\left( 0 + 0 \right) .....................\left[ \sin\left( - \pi \right) = - sin\pi = 0 \right]\]
\[ \Rightarrow 2I = \frac{\pi}{2}\]
\[ \Rightarrow I = \frac{\pi}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.4 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.4 | Q 8 | पृष्ठ ६१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

 

find `∫_2^4 x/(x^2 + 1)dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


Evaluate of the following integral:

(i)  \[\int x^4 dx\]

 


Evaluate of the following integral: 

\[\int\frac{1}{x^5}dx\]

Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

\[\int\frac{2x}{\left( 2x + 1 \right)^2} dx\]

Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left| x - 1 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate the following integral:

\[\int_2^8 \frac{\sqrt{10 - x}}{\sqrt{x} + \sqrt{10 - x}}dx\]

Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


If `I_n = int_0^(pi/4) tan^n theta  "d"theta " then " I_8 + I_6` equals ______.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×