मराठी

Evaluate the Following Integral: π / 2 ∫ − π / 2 { Sin | X | + Cos | X | } D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 

उत्तर

\[\int_\frac{- \pi}{2}^\frac{\pi}{2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} d x\]
\[Since\, f\left( - x \right) = \sin \left| - x \right| + \cos \left| - x \right| = \sin \left| x \right| + \cos \left| x \right| = f\left( x \right)\]
\[So, f\left( x \right) \text{is an even function} . \]
\[ \therefore I = 2 \int_0^\frac{\pi}{2} \left( \sin x + \cos x \right) dx\]
\[ \Rightarrow I = 2 \left[ - \cos x + \sin x \right]_0^\frac{\pi}{2} \]
\[ \Rightarrow I = 2\left( 0 + 1 + 1 - 0 \right)\]
\[ \Rightarrow I = 4\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.3 | Q 15 | पृष्ठ ५६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate the integral by using substitution.

`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral: 

\[\int\frac{1}{x^{3/2}}dx\]

Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate the following integral:

\[\int_{- \pi}^\pi \frac{2x\left( 1 + \sin x \right)}{1 + \cos^2 x}dx\]

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^\pi \left( \frac{x}{1 + \sin^2 x} + \cos^7 x \right)dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_0^(pi4) sec^4x  "d"x` = ______.


`int_0^1 sin^-1 ((2x)/(1 + x^2))"d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×