मराठी

Evaluate : 3 / 2 ∫ 0 | X Sin π X | D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]
बेरीज

उत्तर

\[\text{For }0 < x < 1, x > 0\text{ and }\sin\pi x > 0 \Rightarrow x\sin\pi x > 0\]
\[\text{For }1 < x < \frac{3}{2}, x > 0\text{ and }\sin\pi x < 0 \Rightarrow x\sin\pi x < 0\]

\[\therefore \int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \int_0^1 x\sin\pi x dx - \int_1^\frac{3}{2} x\sin\pi x dx\]
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- \cos\pi x}{\pi} \right) - \int\left( \frac{- \cos\pi x}{\pi} \right)dx\]
\[= \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2}\]

Applying the limits, we get

\[\int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_0^1 - \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_1^\frac{3}{2} \]
\[ = \left[ \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right) \right] - \left[ \left( \frac{- \frac{3}{2}\cos\frac{3\pi}{2}}{\pi} + \frac{\sin\frac{3\pi}{2}}{\pi^2} \right) - \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) \right]\]

\[= \left[ \left( \frac{1}{\pi} + 0 \right) \right] - \left[ \left( 0 - \frac{1}{\pi^2} \right) - \left( \frac{1}{\pi} + 0 \right) \right]\]
\[ = \frac{1}{\pi} + \frac{1}{\pi^2} + \frac{1}{\pi}\]
\[ = \frac{2}{\pi} + \frac{1}{\pi^2}\]
\[ = \frac{2\pi + 1}{\pi^2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Definite Integrals - Exercise 20.5 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 20 Definite Integrals
Exercise 20.5 | Q 42 | पृष्ठ ९५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate:  `int (1+logx)/(x(2+logx)(3+logx))dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_0^π(4x sin x)/(1+cos^2 x) dx`


Evaluate: `intsinsqrtx/sqrtxdx`

 


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_(-1)^1 dx/(x^2 + 2x  + 5)`


If `f(x) = int_0^pi t sin  t  dt`, then f' (x) is ______.


`int 1/(1 + cos x)` dx = _____

A) `tan(x/2) + c`

B) `2 tan (x/2) + c`

C) -`cot (x/2) + c`

D) -2 `cot (x/2)` + c


Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following integral:

\[\int\limits_{- 4}^4 \left| x + 2 \right| dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^3 \left| 3x - 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{\pi/2} \left| \cos 2x \right| dx\]

Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate 

\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]


Evaluate the following integral:

\[\int_0^\frac{\pi}{2} \frac{a\sin x + b\sin x}{\sin x + \cos x}dx\]

 


Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .


Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .


Evaluate: `int_  e^x ((2+sin2x))/cos^2 x dx`


Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×