Advertisements
Advertisements
प्रश्न
Evaluate :
उत्तर
\[\text{For }0 < x < 1, x > 0\text{ and }\sin\pi x > 0 \Rightarrow x\sin\pi x > 0\]
\[\text{For }1 < x < \frac{3}{2}, x > 0\text{ and }\sin\pi x < 0 \Rightarrow x\sin\pi x < 0\]
\[Let I = \int x\sin\pi x dx\]
\[ = x\int \sin\pi x dx - \int\left( \frac{d}{dx}x\int \sin\pi x dx \right)dx\]
\[ = x\left( \frac{- \cos\pi x}{\pi} \right) - \int\left( \frac{- \cos\pi x}{\pi} \right)dx\]
Applying the limits, we get
\[\int_0^\frac{3}{2} \left| x\sin\pi x \right|dx = \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_0^1 - \left[ \frac{- x\cos\pi x}{\pi} + \frac{\sin\pi x}{\pi^2} \right]_1^\frac{3}{2} \]
\[ = \left[ \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) - \left( 0 + 0 \right) \right] - \left[ \left( \frac{- \frac{3}{2}\cos\frac{3\pi}{2}}{\pi} + \frac{\sin\frac{3\pi}{2}}{\pi^2} \right) - \left( \frac{- \cos\pi}{\pi} + \frac{\sin\pi}{\pi^2} \right) \right]\]
\[= \left[ \left( \frac{1}{\pi} + 0 \right) \right] - \left[ \left( 0 - \frac{1}{\pi^2} \right) - \left( \frac{1}{\pi} + 0 \right) \right]\]
\[ = \frac{1}{\pi} + \frac{1}{\pi^2} + \frac{1}{\pi}\]
\[ = \frac{2}{\pi} + \frac{1}{\pi^2}\]
\[ = \frac{2\pi + 1}{\pi^2}\]
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
`int 1/(1 + cos x)` dx = _____
A) `tan(x/2) + c`
B) `2 tan (x/2) + c`
C) -`cot (x/2) + c`
D) -2 `cot (x/2)` + c
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Find : \[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int x/(x^2 + 1)"d"x`
Evaluate:
`int (1 + cosx)/(sin^2x)dx`