Advertisements
Advertisements
प्रश्न
If `f(x) = int_0^pi t sin t dt`, then f' (x) is ______.
पर्याय
cos x + x sin x
x sin x
x cos x
sin x + x cos x
उत्तर
If `f(x) = int_0^pi t sin t dt`, then f' (x) is x sin x.
Explanation:
f(x) `= int_0^x t sin t dt`
`= [t * (- cos t)]_0^x - int_0^x 1 * (- cos t)` dt
= - x cos x - 0 cos 0 + `(sin t)_0^x"`
= -x cosx + sin x
Hence, f'(x) = -[cos x - x sin x] + cos x
= -cos x + x sin x + cos x
= x sin x
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^(pi/2)1/(1+cosx)dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate: `intsinsqrtx/sqrtxdx`
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate the integral by using substitution.
`int_(-1)^1 dx/(x^2 + 2x + 5)`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
The value of the integral `int_(1/3)^4 ((x- x^3)^(1/3))/x^4` dx is ______.
Evaluate of the following integral:
(i) \[\int x^4 dx\]
Evaluate of the following integral:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate the following integral:
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.