Advertisements
Advertisements
प्रश्न
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
उत्तर
Let `int_0^1 sin^-1 ((2x)/(1 + x^2)) dx`
Substituting x = tan θ
`dx = sec^2 theta d theta`
And `(2 tan theta)/(1 + tan^2 theta) = sin 2 theta`
When x = 0
⇒ θ = 0
or x = 1
`=> theta = pi/4`
Hence, `int_0^(pi/4) sin^-1 (sin 2 theta) xx sec^2 theta d theta`
`2 = int_0^(pi/4) theta sec^2 theta d theta`
`= 2 [(theta . tan theta)_0^(pi/4) - int_0^(pi/4) 1 * tan theta d theta]`
`= 2 [pi/4 tan pi/4 - 0] - 2 [log cos theta]_0^(pi/4)`
`= pi/4 + 2 [log cos pi/4 - log cos 0]`
`= pi/2 + 2 [log 1/sqrt2 - log 1]`
`= pi/2 - log 2`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int_e^(e^2) dx/(xlogx)`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 xsqrt(x+2)` (Put x + 2 = `t^2`)
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate :
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.
`int_0^(pi4) sec^4x "d"x` = ______.
The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate: `int x/(x^2 + 1)"d"x`