मराठी

Evaluate the integral by using substitution. ∫01sin-1(2x1+x2)dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the integral by using substitution.

`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`

बेरीज

उत्तर

Let  `int_0^1  sin^-1 ((2x)/(1 + x^2))  dx`

Substituting x = tan θ

`dx = sec^2 theta  d  theta`

And `(2 tan theta)/(1 + tan^2 theta) = sin 2 theta`

When x = 0

⇒ θ = 0

or x = 1

`=> theta = pi/4` 

Hence, `int_0^(pi/4)  sin^-1 (sin 2 theta) xx sec^2 theta  d  theta`

`2 = int_0^(pi/4)  theta sec^2 theta  d  theta`

`= 2 [(theta . tan theta)_0^(pi/4) - int_0^(pi/4) 1 * tan theta  d  theta]`

`= 2 [pi/4  tan  pi/4 - 0] - 2 [log cos theta]_0^(pi/4)`

`= pi/4 + 2 [log cos  pi/4 - log cos 0]`

`= pi/2 + 2 [log  1/sqrt2 - log 1]`

`= pi/2 - log 2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.9 [पृष्ठ ३४०]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.9 | Q 3 | पृष्ठ ३४०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 xsqrt(x+2)`  (Put x + 2 = `t^2`)


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate `int_0^(pi/4) (sinx + cosx)/(16 + 9sin2x) dx`


Evaluate of the following integral:

\[\int\frac{1}{\sqrt[3]{x^2}}dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate:

\[\int\sqrt{\frac{1 - \cos 2x}{2}}dx\]

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate:

\[\int\frac{\cos 2x + 2 \sin^2 x}{\sin^2 x}dx\]

Evaluate the following integral:

\[\int\limits_1^2 \left| x - 3 \right| dx\]

Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_1^4 \left\{ \left| x - 1 \right| + \left| x - 2 \right| + \left| x - 4 \right| \right\} dx\]

 


Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate the following integral:

\[\int\limits_0^4 \left( \left| x \right| + \left| x - 2 \right| + \left| x - 4 \right| \right) dx\]

Evaluate each of the following integral:

\[\int_0^{2\pi} \frac{e^\ sin x}{e^\ sin x + e^{- \ sin x}}dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{3}}^\frac{\pi}{3} \frac{1}{1 + e^\ tan\ x}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{1}{1 + \cot^\frac{3}{2} x}dx\]

 


Evaluate the following integral:

\[\int_0^\pi x\sin x \cos^2 xdx\]

Evaluate : 

\[\int\limits_0^{3/2} \left| x \sin \pi x \right|dx\]

Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x"  d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_0^3 1/sqrt(3x - x^2)"d"x` = ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate: `int x/(x^2 + 1)"d"x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×