Advertisements
Advertisements
प्रश्न
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
उत्तर
`int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`
We know
`int_-a^a "f" ("x")"d" "x" = 0` if f is an odd function i.e i f f (-x) = -f (x)
In the given integral,
`"f" ("x") = (1 - "x"^2) sin "x" cos^2 "x"`
⇒ `"f" (- "x") = (1- (-"x")^2) (sin (-"x")) cos^2 (-"x") = -(1 -"x"^2) sin "x" cos^2 "x"`
⇒ `"f" (-"x") = -"f" ("x")`
So, `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" "dx" = 0`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_1^2 (1/x- 1/(2x^2))e^(2x) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate the following definite integral:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate
\[\int\limits_0^\pi \frac{x}{1 + \sin \alpha \sin x}dx\]
Evaluate :
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
If `I_n = int_0^(pi/4) tan^n theta "d"theta " then " I_8 + I_6` equals ______.
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`