मराठी

\[\Int\Limits_{- 2}^1 \Left| X^3 - X \Right|Dx\] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .

उत्तर

Let \[I = \int\limits_{- 2}^1 \left| x^3 - x \right|dx \text { and } f\left( x \right) = x^3 - x\]

Clearly,

\[f\left( x \right) = x^3 - x = x\left( x - 1 \right)\left( x + 1 \right)\]

The signs of f(x) for different values of x are shown in the figure below.
We observe that:

\[f\left( x \right) > 0\text { for all }x \in \left( - 1, 0 \right) \text { and } , f\left( x \right) < 0 \text { for all } x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)\]

\[\left| f\left( x \right) \right| = \binom{f\left( x \right), x \in \left( - 1, 0 \right)}{ - f\left( x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow \left| x^3 - x \right| = \binom{ x^3 - x, x \in \left( - 1, 0 \right)}{ - \left( x^3 - x \right), x \in \left( - 2, - 1 \right) \cup \left( 0, 1 \right)}\]

\[ \Rightarrow I = \int_{- 2}^{- 1} \left| x^3 - x \right|dx + \int_{- 1}^0 \left| x^3 - x \right|dx + \int_0^1 \left| x^3 - x \right|dx\]

\[\Rightarrow I = \int_{- 2}^{- 1} - \left( x^3 - x \right)dx + \int_{- 1}^0 \left( x^3 - x \right)dx + \int_0^1 - \left( x^3 - x \right)dx\]

\[ \Rightarrow I = \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_{- 2}^{- 1} + \left[ \frac{x^4}{4} - \frac{x^2}{2} \right]_{- 1}^0 + \left[ - \frac{x^4}{4} + \frac{x^2}{2} \right]_0^1 \]

\[ \Rightarrow I = \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - \left( - \frac{16}{4} + \frac{4}{2} \right) \right] + \left[ 0 - \left( \frac{1}{4} - \frac{1}{2} \right) \right] + \left[ \left( - \frac{1}{4} + \frac{1}{2} \right) - 0 \right]\]

\[ \Rightarrow I = \left[ \frac{1}{4} + 2 \right] + \left[ 0 + \frac{1}{4} \right] + \left[ \frac{1}{4} - 0 \right]\]

\[ \Rightarrow I = \frac{11}{4}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Evaluate: `int1/(xlogxlog(logx))dx`


Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`


 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


If `int_0^a1/(4+x^2)dx=pi/8` , find the value of a.


Evaluate :

`int_e^(e^2) dx/(xlogx)`


Evaluate the integral by using substitution.

`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`


Evaluate of the following integral:

\[\int \log_x \text{x  dx}\] 

Evaluate : 

\[\int\frac{e^{6 \log_e x} - e^{5 \log_e x}}{e^{4 \log_e x} - e^{3 \log_e x}}dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate the following definite integral:

\[\int_0^1 \frac{1}{\sqrt{\left( x - 1 \right)\left( 2 - x \right)}}dx\]

Evaluate the following integral:

\[\int\limits_{- 2}^2 \left| x + 1 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/4}^{\pi/4} \left| \sin x \right| dx\]

Evaluate the following integral:

\[\int\limits_{- 5}^0 f\left( x \right) dx, where\ f\left( x \right) = \left| x \right| + \left| x + 2 \right| + \left| x + 5 \right|\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}}dx\]

 


Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{x^{11} - 3 x^9 + 5 x^7 - x^5 + 1}{\cos^2 x}dx\]

Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.


`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`


The value of `int_0^1 (x^4(1 - x)^4)/(1 + x^2) dx` is


Evaluate: `int x/(x^2 + 1)"d"x`


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×