मराठी

If → a = 2 ˆ I + ˆ J − ˆ K , → B = 4 ˆ I − 7 ˆ J + ˆ K , Find a Vector → C Such that → a × → C = → B and → a ⋅ → C = 6 . - Mathematics

Advertisements
Advertisements

प्रश्न

If `veca=2hati+hatj-hatk, vecb=4hati-7hatj+hatk`, find a vector \[\vec{c}\] such that \[\vec{a} \times \vec{c} = \vec{b} \text { and }\vec{a} \cdot \vec{c} = 6\].

उत्तर

Let `vecc= xhati + yhatj + zhatk .`The,

`veca xx vecc = vecb` can be written as `[[hati,hatj,hatk],[2,1, -1],[x,y,z]] = hat4i - hat7j +hatk`

⇒ `(z+y)hati - (2z - x ) hatj +(2y - x)hatk =4hati - 7hatj + k`

\[ \Rightarrow z + y = 4, x - 2z = - 7, 2y - x = 1 . . . \left( 1 \right)\]

Also, 

\[\vec{a} \cdot \vec{c} = 6\]

`(2hati + hatj - hatk) (xhat i + yhatj + zhatk) = 6`

\[ \Rightarrow 2x + y - z = 6\]

\[ \Rightarrow 4x + 2y - 2z = 12\]

\[ \Rightarrow 3x + 2y + x - 2z = 12\]

\[\Rightarrow 3x + 2y - 7 = 12 \left[ From \left( 1 \right) \right]\]

\[ \Rightarrow 3x + 2y = 19 . . . \left( 2 \right)\]

From (1) and (2) we get,
2y − x = 1
2y + 3x = 19

On solving these two equations we get the value of x = \[\frac{9}{2}\] ,y = \[\frac{11}{4}\]

Using the values of x and y we get the value of z as \[\frac{5}{4}\].

So, 

`vec c=9/2hati+11/4hatj+5/4hatk`.

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the sum of the vectors `veca = hati -2hatj + hatk, vecb = -2hati + 4hatj + 5hatk and vecc = hati - 6hatj - 7hatk.`


In triangle ABC, which of the following is not true:


If `veca` and `vecb` are two collinear vectors, then which of the following are incorrect:


A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl’s displacement from her initial point of departure.


If `veca = hati  +hatj + hatk, vecb = 2hati - hatj +  3hatk and vecc = hati - 2hatj + hatk` find a unit vector parallel to the vector `2veca - vecb + 3vecc`.


The two adjacent sides of a parallelogram are `2hati - 4hatj + 5hatk` and `hati - 2hatj - 3hatk`. Find the unit vector parallel to its diagonal. Also, find its area.


Let `veca = hati + 4hatj + 2hatk, vecb = 3hati - 2hatj + 7hatk ` and `vecc = 2hati - hatj + 4hatk`. Find a vector `vecd` which is perpendicular to both `veca` and `vecb`, and `vecc.vecd = 15`.


ABCD is a quadrilateral. Find the sum the vectors \[\overrightarrow{BA} , \overrightarrow{BC} , \overrightarrow{CD}\] and \[\overrightarrow{DA}\]


ABCDE is a pentagon, prove that 
\[\overrightarrow{AB} + \overrightarrow{AE} + \overrightarrow{BC} + \overrightarrow{DC} + \overrightarrow{ED} + \overrightarrow{AC} = 3\overrightarrow{AC}\]


Prove that the sum of all vectors drawn from the centre of a regular octagon to its vertices is the zero vector.


If P is a point and ABCD is a quadrilateral and \[\overrightarrow{AP} + \overrightarrow{PB} + \overrightarrow{PD} = \overrightarrow{PC}\], show that ABCD is a parallelogram.


Write \[\overrightarrow{PQ} + \overrightarrow{RP} + \overrightarrow{QR}\] in the simplified form.


Find the unit vector in the direction of the sum of the vectors `2hati + 3hatj - hatk and 4hati - 3hatj + 2hatk .`


Show that the sum of three vectors determined by the medians of a triangle directed from the vertices is zero.


If `6hati + 10hatj + 3hatk = x(hati + 3hatj + 5hatk) + y(hati - hatj + 5hatk) + z(hati + 3hatj - 4hatk)`, then ______


`[(bar"a", bar"b" + bar"c", bar"a" + bar"b" + bar"c")]` = ______.


Let the position vectors of the points A, Band C be `veca, vecb` and `vecc` respectively. Let Q be the point of intersection of the medians of the triangle ΔABC. Then `vec(QA) + vec(QB) + vec(QC)` =


`veca, vecb` and `vecc` are perpendicular to `vecb + vecc, vecc + veca` and `veca + vecb` respectively and if `|veca + vecb|` = 6, `|vecb + vecc|` = 8 and `|vecc + veca|` = 10, then `|veca + vecb + vecc|` is equal to


Find the value of `x` and `y`. so that the vectors `2hatj + 3hatj` and `xhati + yhati` are equal


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×