Advertisements
Advertisements
प्रश्न
Evaluate the integral by using substitution.
`int_0^(pi/2) (sin x)/(1+ cos^2 x) dx`
उत्तर
`int_0^(pi/2) (sin x)/(1 + cos^2 x) ` dx
Substituting cos x = t,
⇒ - sin x dx = dt
And x = 0, t = 1, x `= pi/2,` t = 0
Hence, `I = - int_1^0 1/(1 + t^2)` dt
`= - [tan^-1 t]_1^0`
`= - [tan^-1 0 - tan^-1 1]`
`= - [0 - pi/4]`
`= pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int (1+logx)/(x(2+logx)(3+logx))dx`
Evaluate : `int_0^4(|x|+|x-2|+|x-4|)dx`
Evaluate `int_(-1)^2|x^3-x|dx`
find `∫_2^4 x/(x^2 + 1)dx`
Evaluate :
`∫_0^π(4x sin x)/(1+cos^2 x) dx`
Evaluate the integral by using substitution.
`int_0^1 sin^(-1) ((2x)/(1+ x^2)) dx`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate :
Evaluate:
Evaluate:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Find : \[\int e^{2x} \sin \left( 3x + 1 \right) dx\] .
Evaluate: \[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x}dx\] .
Evaluate: `int_ e^x ((2+sin2x))/cos^2 x dx`
Evaluate: `int_-π^π (1 - "x"^2) sin "x" cos^2 "x" d"x"`.
Evaluate: `int_1^5{|"x"-1|+|"x"-2|+|"x"-3|}d"x"`.
`int_(pi/5)^((3pi)/10) [(tan x)/(tan x + cot x)]`dx = ?
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
If `int x^5 cos (x^6)"d"x = "k" sin (x^6) + "C"`, find the value of k.