मराठी

Evaluate ∫2−1 ∣x^3−x∣ dx - Mathematics

Advertisements
Advertisements

प्रश्न

 

Evaluate `int_(-1)^2|x^3-x|dx`

 

उत्तर

 

Let:

`I=int_(-1)^2|x^3-x|dx`

f(x)=x3x

f(x)=x3x=x(x1)(x+1)

The signs of f(x) for the different values are shown in the figure given below:

f(x)>0 for all x(1,0)(1,2)

f(x)<0 for all x(0,1)

Therefore

`|x^3-x|={(x^3-x,","xepsilon"(-1,0)"UU"(1,2)"),(-(x^3-x),","xepsilon(0,1)):}`

`:.I=int_(-1)^2|x^3-x|dx`

`=int_(-1)^0|x^3-x|dx+int_0^1|x^3-x|dx+int_1^2|x^3-x|dx`

`=int_(-1)^0(x^3-x)dx-int_0^1(x^3-x)dx+int_1^2(x^3-x)dx`

`=[x^4/4-x^2/2]_(-1)^0+[x^4/4-x^2/2]_0^1+[x^4/4-x^2/2]_1^2`

`=-(1/4-1/2)-(1/4-1/2)+(16/4-4/4)-(1/4-1/2)`

 `=3/4+(4-2)`

 `=11/4`

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

 

Evaluate `∫_0^(3/2)|x cosπx|dx`

 

Evaluate :

`∫_(-pi)^pi (cos ax−sin bx)^2 dx`


Evaluate the integral by using substitution.

`int_0^1 x/(x^2 +1)`dx


Evaluate the integral by using substitution.

`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`


Evaluate the integral by using substitution.

`int_0^2 dx/(x + 4 - x^2)`


Evaluate of the following integral: 

\[\int 3^x dx\]

Evaluate of the following integral:

\[\int 3^{2 \log_3} {}^x dx\]

Evaluate: 

\[\int\frac{1}{a^x b^x}dx\]

Evaluate:

\[\int\frac{e\log \sqrt{x}}{x}dx\]

Evaluate the following integral:

\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- 6}^6 \left| x + 2 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_0^{2\pi} \left| \sin x \right| dx\]

 


Evaluate the following integral:

\[\int\limits_2^8 \left| x - 5 \right| dx\]

 


Evaluate the following integral:

\[\int\limits_{- \pi/2}^{\pi/2} \left\{ \sin \left| x \right| + \cos \left| x \right| \right\} dx\]

 


Evaluate each of the following integral:

\[\int_\frac{\pi}{6}^\frac{\pi}{3} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}}dx\]

Evaluate each of the following integral:

\[\int_{- \frac{\pi}{4}}^\frac{\pi}{4} \frac{\tan^2 x}{1 + e^x}dx\]

 


Evaluate each of the following integral:

\[\int_{- a}^a \frac{1}{1 + a^x}dx\]`, a > 0`

Evaluate the following integral:

\[\int_{- 2}^2 \frac{3 x^3 + 2\left| x \right| + 1}{x^2 + \left| x \right| + 1}dx\]

Evaluate the following integral:

\[\int_0^{2\pi} \sin^{100} x \cos^{101} xdx\]

 


Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .


Evaluate:  `int_-1^2 (|"x"|)/"x"d"x"`.


Find: `int_  (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.


`int_0^1 x(1 - x)^5 "dx" =` ______.


`int_0^(pi4) sec^4x  "d"x` = ______.


Evaluate the following:

`int "dt"/sqrt(3"t" - 2"t"^2)`


Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.


Evaluate:

`int (1 + cosx)/(sin^2x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×