Advertisements
Advertisements
प्रश्न
Evaluate `int_(-1)^2|x^3-x|dx`
उत्तर
Let:
`I=int_(-1)^2|x^3-x|dx`
f(x)=x3−x
f(x)=x3−x=x(x−1)(x+1)
The signs of f(x) for the different values are shown in the figure given below:
f(x)>0 for all x∈(−1,0)∪(1,2)
f(x)<0 for all x∈(0,1)
Therefore
`|x^3-x|={(x^3-x,","xepsilon"(-1,0)"UU"(1,2)"),(-(x^3-x),","xepsilon(0,1)):}`
`:.I=int_(-1)^2|x^3-x|dx`
`=int_(-1)^0|x^3-x|dx+int_0^1|x^3-x|dx+int_1^2|x^3-x|dx`
`=int_(-1)^0(x^3-x)dx-int_0^1(x^3-x)dx+int_1^2(x^3-x)dx`
`=[x^4/4-x^2/2]_(-1)^0+[x^4/4-x^2/2]_0^1+[x^4/4-x^2/2]_1^2`
`=-(1/4-1/2)-(1/4-1/2)+(16/4-4/4)-(1/4-1/2)`
`=3/4+(4-2)`
`=11/4`
APPEARS IN
संबंधित प्रश्न
Evaluate `∫_0^(3/2)|x cosπx|dx`
Evaluate :
`∫_(-pi)^pi (cos ax−sin bx)^2 dx`
Evaluate the integral by using substitution.
`int_0^1 x/(x^2 +1)`dx
Evaluate the integral by using substitution.
`int_0^(pi/2) sqrt(sin phi) cos^5 phidphi`
Evaluate the integral by using substitution.
`int_0^2 dx/(x + 4 - x^2)`
Evaluate of the following integral:
Evaluate of the following integral:
Evaluate:
Evaluate:
Evaluate the following integral:
\[\int\limits_0^2 \left| x^2 - 3x + 2 \right| dx\]
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate each of the following integral:
Evaluate the following integral:
Evaluate the following integral:
Evaluate : \[\int\limits_{- 2}^1 \left| x^3 - x \right|dx\] .
Evaluate: `int_-1^2 (|"x"|)/"x"d"x"`.
Find: `int_ (3"x"+ 5)sqrt(5 + 4"x"-2"x"^2)d"x"`.
`int_0^1 x(1 - x)^5 "dx" =` ______.
`int_0^(pi4) sec^4x "d"x` = ______.
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate: `int_0^(π/2) sin 2x tan^-1 (sin x) dx`.
Evaluate:
`int (1 + cosx)/(sin^2x)dx`