Advertisements
Advertisements
प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
उत्तर
`I=intsqrtx/sqrt(a^3-x^3)dx`
Let: `x^(3/2)=t`
`=>3/2x^(1/2)dx=dt`
`x^(1/2)dx=2/3dt`
Putting the values in I, we get
`I=intsqrtx/sqrt(a^3-x^3)dx`
`=2/3int1/(sqrt(a^3-t^2))dt`
Using the following formula of integration, we get
`intdx/sqrt(a^2-x^2)=sin^(-1)(x/a)`
`:.2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/(a^(3/2)))+C`
Again, putting the value of t, we get
`2/3int1/sqrt(a^3-t^2)dt=2/3sin^(-1)(t/a^(3/2))+C`
`=2/3sin^(-1)(x^(3/2)/a^(3/2))+C`
Here, C is constant of integration.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int log ("x"^2 + "x")` dx
`int (log x)/(log ex)^2` dx = _________
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Write `int cotx dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`