Advertisements
Advertisements
प्रश्न
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
उत्तर
Let I = `int 1/sqrt("x"^2 + "a"^2) "dx"`
Put x = a tan θ ⇒ tan θ = `"x"/"a"`
∴ dx = a sec2 θ dθ
∴ I = `int 1/ sqrt("a"^2 "tan"^2 theta +"a"^2) "a" "sec"^2 theta "d" theta`
= `int ("a"."sec"^2 theta)/("a" sqrt(1+"tan"^2 theta)) "d"theta`
= `int ("sec"^2 theta)/("sec" theta) "d"theta `
`= int "sec" theta . "d" theta`
`= "log" |"sec" theta +"tan" theta| +"c"_1`
`= "log" |"x"/"a" + sqrt("sec"^2 theta)| + "c"_1`
`= "log" | "x"/"a" + sqrt 1+ "tan"^2 theta | + "c"_1`
=`"log" |"x" /"a" +sqrt(1+"x"^2/"a"^2)| +"c"_1`
=` "log" |"x"/"a" + sqrt( "a"^2 + "x"^2)/"a"| + "c"_1`
`= "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c"_1`
`therefore int 1/sqrt("x"^2 + "a"^2) "dx" = "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c" ,`
where c = - log a +c1
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(1+ log x)^2/x`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Write `int cotx dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int x^3 e^(x^2) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`