मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Prove That: - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`

बेरीज

उत्तर

Let I = `int  1/sqrt("x"^2 + "a"^2) "dx"`

Put x = a tan θ ⇒ tan θ = `"x"/"a"`

∴ dx = a sec2 θ dθ 

∴ I = `int  1/ sqrt("a"^2 "tan"^2 theta +"a"^2) "a"  "sec"^2  theta  "d" theta`

= `int  ("a"."sec"^2 theta)/("a" sqrt(1+"tan"^2 theta))     "d"theta`

= `int  ("sec"^2 theta)/("sec" theta) "d"theta `

`= int  "sec" theta . "d" theta`

`= "log"   |"sec" theta +"tan" theta| +"c"_1`

`= "log" |"x"/"a" + sqrt("sec"^2 theta)| + "c"_1`

`= "log" | "x"/"a" + sqrt 1+ "tan"^2 theta | + "c"_1`

=`"log" |"x" /"a" +sqrt(1+"x"^2/"a"^2)| +"c"_1`

=` "log" |"x"/"a" + sqrt( "a"^2 + "x"^2)/"a"| + "c"_1`

`= "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c"_1`

`therefore int  1/sqrt("x"^2 + "a"^2) "dx" = "log" |"x" +sqrt("x"^2 +"a"^2)| - "log" "a" + "c" ,`

where c = - log a +c1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (February) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(1+ log x)^2/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{1}{x + x \log x} dx\] is


Evaluate the following integrals : `int sin x/cos^2x dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Write `int cotx  dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


`int x^3 e^(x^2) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×