Advertisements
Advertisements
प्रश्न
`int sqrt(x^2 + 2x + 5)` dx = ______________
पर्याय
`(x + 1) sqrt(x^2 + 2x + 5) + log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
`(x + 2) sqrt(x^2 + 2x + 5) + log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`
`(("x" + 2)/2) sqrt(x^2 + 2x + 5) + 1/2 log [(x + 2) + sqrt(x^2 + 2x + 5)] + "c"`
`(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
उत्तर
`(("x" + 1)/2) sqrt(x^2 + 2x + 5) + 2 log [(x + 1) + sqrt(x^2 + 2x + 5)] + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: ∫ |x| dx if x < 0
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(1 + sin2x) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int(5x + 2)/(3x - 4) dx` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Write `int cotx dx`.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).