Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int e^{ax} . \text{ cos bx dx }\]
\[ = \cos bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} - \int - \sin bx \times b . \frac{e^{ax}}{a}\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a}\int e^{ax} . \text{ sin bx dx }\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \text{ sin bxdx}\]
\[ = \sin bx\int e^{ax} \text{ dx} - \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax}\text{ dx }\right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int b . \cos bx \times \frac{e^{ax}}{a}dx\]
\[ = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From} \left( 1 \right) \text{ and }\left( 2 \right)\]
\[ \therefore I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a} \left\{ \sin bx . \frac{e^{ax}}{a} - \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a^2} \text{ sin bx e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \cos bx . \frac{e^{ax}}{a} + \frac{b \text{ sin bx e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \cos bx + b \sin bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \cos bx + b\sin bx \right) e^{ax}}{a^2 + b^2} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Evaluate the following integrals : `int sin x/cos^2x dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int sqrt(1 + sin2x) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`