Advertisements
Advertisements
प्रश्न
Integrate the functions:
`xsqrt(1+ 2x^2)`
उत्तर
Let `I = int x sqrt(1 + 2x^2)` dx
Taking 1 + 2x2 = t
4x dx = dt
or x dx `= 1/4` dt
Hence, `I = int 1/4 t^(1/2) dt = 1/4 int t^(1/2)` dt
`= 1/4 . 2/3 t^(3/2) + C`
`= 1/6 (1 + 2x^2)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (sin4x)/(cos 2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int sin^-1 x`dx = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int (f^'(x))/(f(x))dx` = ______ + c.
`int (logx)^2/x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`