Advertisements
Advertisements
प्रश्न
`int (sin4x)/(cos 2x) "d"x`
उत्तर
`int (sin4x)/(cos 2x) "d"x`
= `int (sin2(2x))/(cos2x) "d"x`
= `int (2sin2x cos2x)/(cos 2x) "d"x`
= `2 int sin 2x "d"x`
= `2*((-cos 2x))/2 + c`
= – cos 2x + c
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int x^2/sqrt(1 - x^6)` dx = ________________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int cos sqrtx` dx = _____________
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int (cos x)/(1 - sin x) "dx" =` ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int 1/(x(x-1)) dx`