मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

∫sin4xcos2xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (sin4x)/(cos 2x) "d"x`

बेरीज

उत्तर

`int (sin4x)/(cos 2x) "d"x`

= `int (sin2(2x))/(cos2x) "d"x`

= `int (2sin2x cos2x)/(cos 2x) "d"x`

= `2 int sin 2x  "d"x`

= `2*((-cos 2x))/2 + c`

= – cos 2x + c

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2.3: Indefinite Integration - Very Short Answers

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`cos x /(sqrt(1+sinx))`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


Evaluate the following integrals : tan2x dx


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int x^2/sqrt(1 - x^6)` dx = ________________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int cos^3x  dx` = ______.


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×