Advertisements
Advertisements
प्रश्न
`int (dx)/(sin^2 x cos^2 x)` equals:
पर्याय
tan x + cot x + C
tan x - cot x + C
tan x cot x + C
tan x - cot 2x + C
उत्तर
tan x - cot x + C
Explanation:
Let `I = int dx/(sin^2 cos^2 x)`
`= int (sin^2 x cos^2 x)/(sin^2 x cos^2 x) dx`
`= int ((sin^2 x)/(sin^2 x cos^2 x) + (cos^2 x)/(sin^2 x cos^2 x)) dx`
`= int (1/(cos^2 x) + 1/(sin^2 x)) dx`
`= int (sec^2 x + cosec^2 x) dx`
`= int sec^2 dx + int cosec^2 x dx`
= tan x - cot x + C
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int sqrt(1 + sin2x) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`