Advertisements
Advertisements
प्रश्न
`int (dx)/(sin^2 x cos^2 x)` equals:
विकल्प
tan x + cot x + C
tan x - cot x + C
tan x cot x + C
tan x - cot 2x + C
उत्तर
tan x - cot x + C
Explanation:
Let `I = int dx/(sin^2 cos^2 x)`
`= int (sin^2 x cos^2 x)/(sin^2 x cos^2 x) dx`
`= int ((sin^2 x)/(sin^2 x cos^2 x) + (cos^2 x)/(sin^2 x cos^2 x)) dx`
`= int (1/(cos^2 x) + 1/(sin^2 x)) dx`
`= int (sec^2 x + cosec^2 x) dx`
`= int sec^2 dx + int cosec^2 x dx`
= tan x - cot x + C
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "e"^sqrt"x"` dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x^3"e"^(x^2) "d"x`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).