Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
उत्तर
Let I = `int ((sin^-1 x)^(3/2))/sqrt(1 - x^2).dx`
Put sin–1x = t.
∴ `(1)/sqrt(1 - x^2).dx` = dt
∴ I = `int t^(3/2)dt`
= `t^(5/2)/(5/2) + c`
= `(2)/(5)(sin^-1x)^(5/2) + c`.
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int sin^-1 x`dx = ?
`int dx/(1 + e^-x)` = ______
`int(5x + 2)/(3x - 4) dx` = ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int x^3 e^(x^2) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`