Advertisements
Advertisements
प्रश्न
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
उत्तर
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + 4 log |x – 1| + c
Explanation:
`int (x^2 + x - 6)/((x - 2)(x - 1)) dx = int((x + 3)(x - 2))/((x - 2)(x - 1))`dx
= `int (x + 3)/(x - 1)`dx
= `int ((x - 1) + 4)/(x - 1)`dx
= `int ((1 + 4)/(x - 1))`dx
= x + 4 log |x – 1| + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(1 - tan x)`
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate `int 1/((2"x" + 3))` dx
`int x^x (1 + logx) "d"x`
`int (cos x)/(1 - sin x) "dx" =` ______.
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate `int 1/(x(x-1))dx`