Advertisements
Advertisements
प्रश्न
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
विकल्प
`1/3`
`1/2`
`1/4`
2
उत्तर
`1/4`
Explanation:
Let x + 2 = p `"d"/"dx" (2"x"^2 + 6"x" + 5) + "q"`
= p(4x + 6) + q
∴ x + 2 = 4px + 6p + q
∴ 4p = 1 and 6p + q = 2
∴ p = `1/4`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int cos^3x dx` = ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`