Advertisements
Advertisements
प्रश्न
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
उत्तर
\[\int \sqrt{4 - x^2} dx\]
\[ = \int \sqrt{2^2 - x^2} \text{ dx }\]
\[ = \frac{x}{2}\sqrt{2^2 - x^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x}{2} \right) + C \left( \because \sqrt{a^2 - x^2} = \frac{x}{2}\sqrt{a^2 - x^2} - \frac{a^2}{2} \sin^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{x}{2}\sqrt{4 - x^2} + 2 \sin^{- 1} \left( \frac{x}{2} \right) + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`1/(1 - tan x)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int sin^-1 x`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int 1/(x(x-1))dx`