Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
उत्तर
Let I = `int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Let 20 - 12ex = A(3ex - 4) + B `"d"/"dx"`(3ex - 4)
= 3 Aex - 4A + 3Bex
∴ 20 - 12ex = (3A + 3B)ex - 4A
Comparing the coefficients of ex and constant term on both sides, we get
- 4A = 20 and 3A + 3B = - 12
Solving these equations, we get
A = -5 and B = 1
∴ I = `int (-5(3"e"^"x" - 4) + 3"e"^"x")/(3"e"^"x" - 4)`dx
`= - 5 int "dx" + int (3"e"^"x")/(3"e"^"x" - 4)` dx
∴ I = - 5x + log `|(3"e"^"x" - 4)|` + c ....`[int ("f" '("x"))/("f" ("x")) "dx" = log |f ("x")| + "c"]`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following : `int (logx)2.dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
`int logx/x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int(log(logx))/x "d"x`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).