Advertisements
Advertisements
प्रश्न
उत्तर
Let I= \[\int\]sin3 x . cos x dx
⇒ cos x dx = dt
\[ = \frac{\sin^4 x}{4} + C \left( \because t = \sin x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int x/(x + 2) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int 1/(sinx.cos^2x)dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^3 e^(x^2) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(5x^2-6x+3)/(2x-3) dx`