Advertisements
Advertisements
प्रश्न
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
उत्तर
Let `I = int (e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))` dx
Put e2x + e-2x = t
2e2x - 2e-2x dx = dt
⇒ 2(e2x - e-2x) dx = `dt/2`
Hence, `I = 1/2 int 1/t` dt
`= 1/2 log t + C`
`= 1/2 log (e^(2x) + e^(-2x)) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int 1/(x(x-1)) dx`
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int cos^3x dx` = ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int (1)/(x(x - 1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int(1 + x + x^2 / (2!))dx`