Advertisements
Advertisements
प्रश्न
`int logx/(log ex)^2*dx` = ______.
विकल्प
`x/(1 + log x) + c`
x(1 + log x) + c
`1/(1 + log x) + c`
`1/(1 - log x) + c`
उत्तर
`int logx/(log ex)^2*dx` = `underlinebb(x/(1 + log x) + c)`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Integrate the functions:
`(1+ log x)^2/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int cos sqrtx` dx = _____________
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int (cos x)/(1 - sin x) "dx" =` ______.
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
Write `int cotx dx`.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate `int1/(x(x - 1))dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int 1/(x(x-1))dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int(1+x+x^2/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int1/(x(x - 1))dx`