Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I} = \int \frac{\cos x}{3 + 2 \sin x}dx\]
\[\text{ Let 3} + 2 \sin x = t\]
\[ \Rightarrow 2 \text{ cos x dx }= dt\]
\[ \Rightarrow \text{ cos x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t}\]
\[ = \int\frac{1}{2} \text{ log }\left| t \right| + C\]
\[ = \frac{1}{2}\text{ log} \left| 3 + 2 \sin x \right| + C \left( \because t = 3 + 2 \text{ sin x} \right)\]
APPEARS IN
संबंधित प्रश्न
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 + cot x)`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate `int 1/((2"x" + 3))` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int x^3"e"^(x^2) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`