मराठी

Write a Value of ∫ Cos X 3 + 2 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]
बेरीज

उत्तर

\[\text{ Let I} = \int \frac{\cos x}{3 + 2 \sin x}dx\]
\[\text{ Let 3} + 2 \sin x = t\]
\[ \Rightarrow 2 \text{ cos x dx }= dt\]
\[ \Rightarrow \text{ cos x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t}\]
\[ = \int\frac{1}{2} \text{ log }\left| t \right| + C\]
\[ = \frac{1}{2}\text{ log} \left| 3 + 2 \sin x \right| + C \left( \because t = 3 + 2 \text{ sin x} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 7 | पृष्ठ १९७

संबंधित प्रश्‍न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(9 - 4x^2)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int "e"^sqrt"x"` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×