Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I} = \int \frac{\cos x}{3 + 2 \sin x}dx\]
\[\text{ Let 3} + 2 \sin x = t\]
\[ \Rightarrow 2 \text{ cos x dx }= dt\]
\[ \Rightarrow \text{ cos x dx }= \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int\frac{dt}{t}\]
\[ = \int\frac{1}{2} \text{ log }\left| t \right| + C\]
\[ = \frac{1}{2}\text{ log} \left| 3 + 2 \sin x \right| + C \left( \because t = 3 + 2 \text{ sin x} \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(9 - 4x^2)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "e"^sqrt"x"` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`