Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
Let I= \[\int\] ex sec x(1 + tan x) dx
Let ex sec x = t
⇒ (ex sec x + ex sec x tan x)dx = dt
⇒ ex sec x (1 + tan x) dx = dt
= ex sec x + C \[\left( \because t = e^x \sec x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`1/(x-sqrtx)`
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int x^x (1 + logx) "d"x`
`int sin^-1 x`dx = ?
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`