Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \sqrt{2 x^2 + 3x + 4}\text{ dx}\]
\[ = \sqrt{2} \int \sqrt{x^2 + \frac{3}{2}x + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{x^2 + \frac{3}{2}x + \left( \frac{3}{4} \right)^2 - \left( \frac{3}{4} \right)^2 + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( x + \frac{3}{4} \right)^2 - \frac{9}{16} + 2} \text{ dx}\]
\[ = \sqrt{2} \int \sqrt{\left( x + \frac{3}{4} \right)^2 + \left( \frac{\sqrt{23}}{4} \right)^2}\text{ dx}\]
\[ = \sqrt{2} \left[ \frac{x + \frac{3}{4}}{2} \sqrt{\left( x + \frac{3}{4} \right)^2 + \left( \frac{\sqrt{23}}{4} \right)^2} + \frac{23}{32}\text{ ln} \left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| \right] + C \left[ \because \int\sqrt{x^2 + a^2} dx = \frac{1}{2}x\sqrt{x^2 + a^2} - \frac{1}{2} a^2 \text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right]\]
\[ = \sqrt{2} \left[ \left( \frac{4x + 3}{8} \right) \sqrt{x^2 + \frac{3}{2}x + 2} + \frac{23}{32}\text{ ln } \left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| \right] + C\]
\[ = \left( \frac{4x + 3}{8} \right) \sqrt{2 x^2 + 3x + 4} + \frac{23\sqrt{2}}{32}\text{ ln }\left| x + \frac{3}{4} + \sqrt{x^2 + \frac{3}{2}x + 2} \right| + C\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int cos^7 x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int 1/(sinx.cos^2x)dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).