मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following integrals : ∫3cosx4sin2x+4sinx-1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`

बेरीज

उत्तर

Let I = `int (3cosx)/(4sin^2x + 4sinx - 1).dx`

Put sin x = t
∴ cosx dx = dt

∴ I = `int 3/(4t^2 + 4t - 1)dt`

I = `3/4 int 1/(t^2 + t - 1/4)dt`

I = `3/4 int 1/((t^2 + t + 1/4) - 1/4 - 1/4)dt`

I = `3/4 int 1/ ((t + 1/2)^2 - 1/2)dt`

I = `3/4 int 1/sqrt((t + 1/2)^2 - (1/sqrt2)^2)dt`

`[∵ int 1/(x^2 - a^2)dx = 1/(2a) log |(x - a)/(x + a)| + c]`

I = `3/4 xx 1/(2(1/sqrt2)) log |(t + 1/2 - 1/sqrt2)/(t + 1/2 + 1/sqrt2)| + c`

I = `3/(4sqrt2) log |(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)/(2sqrt2t + (2sqrt2)/2 - (2sqrt2)/sqrt2)| + c`

I = `3/(4sqrt2) log |(2sqrt2t + sqrt2 - 2)/(2sqrt2t +sqrt2 + 2)| + c`

I = `3/(4sqrt2) log |(2sqrt2sin + sqrt2 - 2)/(2sqrt2sin +sqrt2 + 2)| + c`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.8 | पृष्ठ १२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(1+ log x)^2/x`


Solve: dy/dx = cos(x + y)


\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


\[\int x \sin^3 x\ dx\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


`int sqrt(1 + "x"^2) "dx"` =


Evaluate `int "x - 1"/sqrt("x + 4")` dx


`int (log x)/(log ex)^2` dx = _________


`int sqrt(1 + sin2x)  "d"x`


`int x^x (1 + logx)  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


`int 1/(sin^2x cos^2x)dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int1/(x(x-1))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×