Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/("x" log "x")`dx
उत्तर
Let I = `int 1/("x" log "x")`dx
Put log x = t
∴ `1/"x" "dx" = "dt'`
∴ I = `int 1/"t"` dt = log |t| + c
∴ I = log |log x| + c
Alternate Method:
Let I = `int 1/("x" * log "x")`dx
`= int (1//"x" "dx")/(log "x")`
∴ I = log |log x| + c .....`[because int ("f" '("x"))/("f"("x")) "dx" = log |"f"("x")| + "c"]`
APPEARS IN
संबंधित प्रश्न
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
`int logx/(log ex)^2*dx` = ______.
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int 1/(x(x-1)) dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`