Advertisements
Advertisements
प्रश्न
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
उत्तर
Let I = ∫ (x + 1)(x + 2)7 (x + 3)dx
Put x + 2 = t
∴ dx = dt
Also, x = t - 2
∴ x + 1 = t - 2 + 1
= t - 1
and x + 3 = t - 2 + 3
= t + 1
∴ I = `int ("t" - 1) * "t"^7 ("t" + 1) * "dt"`
`= int ("t"^2 - 1) * "t"^7 * "dt"`
`= int ("t"^9 - "t"^7) "dt"`
`= int "t"^9 "dt" - int "t"^7 "dt"`
`= "t"^10/10 - "t"^8/8 + "c"`
∴ I = `("x + 2")^10/10 - ("x + 2")^8/8` + c
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int1/(x(x-1))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`