Advertisements
Advertisements
प्रश्न
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
उत्तर
f'(x) = x2 + 5 ...(Given)
∴ f(x) = ∫f'(x) dx
∴ f(x) = ∫(x2 + 5) dx
∴ f(x) = ∫ x2 dx + 5 ∫ dx
∴ f(x) = `"x"^3/3 + 5"x" + "c"` ....(i)
Substitute x = 0, f(0) = −1 ...(Given)
∴ f(x) = `"x"^3/3 + 5"x" + "c"`
∴ f(0) = `0^3/3 + 5(0) + "c"`
∴ −1 = 0 + 0 + c
∴ c = −1
Substituting c = – 1 in (i), we get,
∴ f(x) = `"x"^3/3 + 5"x" + (− 1)`
∴ f(x) = `"x"^3/3 + 5"x" − 1`
APPEARS IN
संबंधित प्रश्न
Evaluate :`intxlogxdx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
`int (cos2x)/(sin^2x) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int1/(x(x - 1))dx`