Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
Let I=\[\int\] tan3 x . sec2 x dx
⇒ sec2x dx = dt
\[ = \frac{\tan^4 x}{4} + C \left( \because t = \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/(cos x - sin x)` dx = _______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int cos^3x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`