Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
Let I=\[\int\] ex (sin x + cos x) dx
⇒ (ex . sin x + ex cos x) dx = dt
\[\therefore I = \int dt\]
\[ = t + C\]
\[ = e^x \sin x + C \left( \because t = e^x \sin x \right)\]
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`x/(e^(x^2))`
Write a value of
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : cos7x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int x^3 e^(x^2) dx`
Evaluate `int (1)/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`