Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t.x:
cos8xcotx
उत्तर
Let I = `int cos^8xcotxdx`
= `int cos^8x. cosx/sinx .dx`
Put sinx = t
∴ cosx dx = dt
cos8x = (cos2x)4
= (1 – sin2x)4
= (1 – t2)4
= 1 – 4t2 + 6t4 – 4t6 + t8
I = `int(1 - 4t^2 + 6t^4 - 4t^6 + t^8)/tdt`
= `int[1/t - 4t +6t^3 - 4t^5 + t^7]dt`
= `int 1/t dx - 4 int tdt + 6 int t^3 dt - 4 int t^5 dt + int t^7 dt`
= `log|t| - 4 (t^2/2) + 6(t^4/4) - 4(t^6/6) + t^8/(8) + c`
= `log|sinx| - 2sin^2x + 3/2 sin^4x - 2/3 sin^6x + (sin^8x)/(8) + c`.
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int logx/x "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x/(x + 2) "d"x`
`int(log(logx))/x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int1/(4 + 3cos^2x)dx` = ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int cos^3x dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1)/(x(x - 1))dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).