मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : ∫12sin2x-3dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`

बेरीज

उत्तर

Let I = `int (1)/(2sin 2x - 3)dx`

Put tan x = t
∴ x = tan–1 t

∴ dx = `dt/(1 + t^2) and sin 2x = (2t)/(1 + t^2)`

∴ I = `int(1)/(2((2t)/(1 + t^2)) - 3).dt/(1 + t^2)`

= `int (1 + t^2)/(4t - 3 - 3t^2).dt/(1 + t^2)`

= `int (1)/(-3t^2 + 4t - 3)dt`

= `(1)/(3) int (1)/(t^2 - 4/3t + 1)dt`

= `-(1)/(3)  int (1)/((t^2 - 4/3t + 4/9) - (4)/(9) + 1)dt`

= `-(1)/(3) int (1)/((t - 2/3)^2 + (sqrt(5)/3)^2)dt`

= `-(1)/(3) xx (1)/((sqrt(5)/3))tan^-1 ((t - 2/3)/(sqrt(5)/3)) + c`

= `-(1)/sqrt(5)tan^-1 ((3t - 2)/sqrt(5)) + c`

= `-(1)/sqrt(5)tan^-1((3tan x - 2)/(sqrt(5))) + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.6 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int cos sqrtx` dx = _____________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int cot^2x  "d"x`


`int cos^7 x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int x^3"e"^(x^2) "d"x`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


`int(log(logx) + 1/(logx)^2)dx` = ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int cos^3x  dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×