Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
उत्तर
Let I = `int (1)/(2sin 2x - 3)dx`
Put tan x = t
∴ x = tan–1 t
∴ dx = `dt/(1 + t^2) and sin 2x = (2t)/(1 + t^2)`
∴ I = `int(1)/(2((2t)/(1 + t^2)) - 3).dt/(1 + t^2)`
= `int (1 + t^2)/(4t - 3 - 3t^2).dt/(1 + t^2)`
= `int (1)/(-3t^2 + 4t - 3)dt`
= `(1)/(3) int (1)/(t^2 - 4/3t + 1)dt`
= `-(1)/(3) int (1)/((t^2 - 4/3t + 4/9) - (4)/(9) + 1)dt`
= `-(1)/(3) int (1)/((t - 2/3)^2 + (sqrt(5)/3)^2)dt`
= `-(1)/(3) xx (1)/((sqrt(5)/3))tan^-1 ((t - 2/3)/(sqrt(5)/3)) + c`
= `-(1)/sqrt(5)tan^-1 ((3t - 2)/sqrt(5)) + c`
= `-(1)/sqrt(5)tan^-1((3tan x - 2)/(sqrt(5))) + c`.
APPEARS IN
संबंधित प्रश्न
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
cot x log sin x
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int cos sqrtx` dx = _____________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
`int cos^7 x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
`int x^3"e"^(x^2) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (cos x)/(1 - sin x) "dx" =` ______.
`int sec^6 x tan x "d"x` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`