Advertisements
Advertisements
प्रश्न
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
उत्तर
Let I = `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`= int "e"^"x" [((2 + "x") - 1)/(2 + "x")^2]` dx
`= int "e"^"x" [1/(2 + "x") - 1/(2 + "x")^2]`dx
Let f(x) = `1/(2 + "x")`
∴ f '(x) = `(-1)/(2 +"x")^2`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
`= "e"^"x" * 1/(2 + "x")` + c
∴ I = `"e"^"x"/(2 + "x")` + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
`int cot^2x "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int cos^3x dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`