Advertisements
Advertisements
Question
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Solution
Let I = `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`= int "e"^"x" [((2 + "x") - 1)/(2 + "x")^2]` dx
`= int "e"^"x" [1/(2 + "x") - 1/(2 + "x")^2]`dx
Let f(x) = `1/(2 + "x")`
∴ f '(x) = `(-1)/(2 +"x")^2`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
`= "e"^"x" * 1/(2 + "x")` + c
∴ I = `"e"^"x"/(2 + "x")` + c
APPEARS IN
RELATED QUESTIONS
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int cot^2x "d"x`
`int cos^7 x "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int1/(x(x-1))dx`