English

∫e3x-e2xex+1 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

Sum

Solution

Let I = `int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`

= `int sqrt(("e"^(2x)("e"^x - 1))/("e"^x + 1))  "d"x`

= `int"e"^x sqrt(("e"^x - 1)/("e"^x + 1))  "d"x`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt(("t" - 1)/("t" + 1))  "dt"`

= `int sqrt(("t" - 1)/("t" + 1) xx ("t" - 1)/("t" - 1))  "dt"`

= `int ("t" - 1)/sqrt("t"^2 - 1)  "dt"`

= `int ("t"/sqrt("t"^2 - 1) - 1/sqrt("t"^2 - 1))  "dt"`

= `int "t"/sqrt("t"^2 - 1)  "dt" - int  1/sqrt("t"^2 - 1)  "dt"`

= I1 − I2      .......(i)

I1 = `int "t"/sqrt("t"^2 - 1)  "dt"`

Put t2 − 1 = a

∴ 2t dt = da

I1 = `1/2 int "da"/sqrt("a")`

= `1/2 int "a"^(1/2) "da"`

= `1/2("a"^(1/2)/(1/2)) + "c"_1`

= `sqrt("a") + "c"_1`

= `sqrt("t"^2 - 1) + "c"_1`

I1 = `sqrt("e"^(2x) - 1) + "c"_1`    ......(ii)

I2 = `int 1/sqrt("t"^2 - 1^2)  "dt"`

= `log|"t" + sqrt("t"^2 - 1^2)| + "c"_2`

I2 = `log|"e"^x + sqrt("e"^(2x) - 1)| + "c"_2`  .......(iiii)

 From (i), (ii) and (iii), we get

I = `sqrt("e"^(2x) - 1) - log|"e"^x + sqrt("e"^(2x) - 1)| +"c"`,

 where c = c1 − c2

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Long Answers III

APPEARS IN

RELATED QUESTIONS

Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


`int (dx)/(sin^2 x cos^2 x)` equals:


Solve: dy/dx = cos(x + y)


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


`int "dx"/(9"x"^2 + 1)= ______. `


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


`int logx/(log ex)^2*dx` = ______.


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


`int 1/(cos x - sin x)` dx = _______________


`int sqrt(1 + sin2x)  "d"x`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int(cos 2x)/sinx dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×