English

Integrate the following w.r.t.x : 3x-1-2x2+x+3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`

Sum

Solution

Let I  = `int (3x + 1)/sqrt(-2x^2 + x + 3).dx`

Let 3x + 1 = `"A"[d/dx(-2x^2 + x + 3)] + "B"`

= A(2 – 2x) + B
∴ 3x + 1 = 2Ax + (2A + B)
Comparing the coefficient of x and constant on both the sides, we get
– 2A = 7 and 2A + B = 3

∴ A = `(-7)/(2) and 2(-7/2) + "B" ` = 3

∴ B = 10
∴ 7x  + 3 = `(-7)/(2)(2 - 2x) + 10`

∴ I = `int ((-7)/(2)(2 - 2x) + 10)/sqrt(3 + 2x - x^2).dx`

= `(-7)/(2) int ((2 - 2x))/sqrt(3 + 2x - x^2).dx + 10 int(1)/sqrt(3 + 2x - x^2)x`

= `(-7)/(2)"I"_1 + 10"I"_2`

In I1, put 3 + 2x – x2 = t
∴ (2 – 2x)dx = dt

∴ I1 = `int (1)/sqrt(t)dt`

= `int t^(-1/2) dt`

= `t^(1/2)/(1/2) + c_1`

= `2sqrt(3 + 2x - x^2) + c_1`

I2 = `int (1)/sqrt(3 - (x^2 - 2x + 1) + 1).dx`

= `int (1)/sqrt((2)^2 - (x - 1)^2).dx`

= `sin^-1((x - 1)/2) + c_2`

`-(3)/(2) sqrt(-2x^2 + x + 3) + (7)/(4sqrt(2)) sin^-1((4x - 1)/5) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.11 | Page 150

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Solve: dy/dx = cos(x + y)


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×