Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Solution
Let I = `int (1)/(cosx - sinx).dx`
Dividing each term by `sqrt(1^2 + (-1)^2) = sqrt(2)`, we get
I = `(1)/sqrt(2) int (1)/(cosx. 1/sqrt(2) - sinx. 1/sqrt(2)).dx`
= `1/sqrt(2) int (1)/(cosx . cos pi/(4) - sin x. sin pi/(4)).dx`
= `1/sqrt(2) int (1)/(cos(x + pi/4)).dx`
= `1/sqrt(2) int sec(x + pi/4).dx`
= `1/sqrt(2)log|sec(x + pi/4) + tan(x + pi/4)| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
`int sqrt(1 + "x"^2) "dx"` =
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int "x" * "e"^"2x"` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (cos2x)/(sin^2x) "d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int1/(x(x - 1))dx`
Evaluate `int 1/(x(x-1)) dx`