English

I F ∫ ( X − 1 X 2 ) E X D X = F ( X ) E X + C , T H E N W R I T E T H E V a L U E O F F ( X ) . - Mathematics

Advertisements
Advertisements

Question

\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]
Sum

Solution

\[\int\left( \frac{x - 1}{x^2} \right) e^x dx = \int\left( \frac{x}{x^2} - \frac{1}{x^2} \right) e^x dx\]
\[ = \int\left( \frac{1}{x} - \frac{1}{x^2} \right) e^x dx\]
\[\text{ Consider,} f\left( x \right) = \frac{1}{x},\text{  then f}^ \left( x \right) = - \frac{1}{x^2}\]
\[\text{ Thus , the  given  integrand  is  of  the form e}^x \left[ f\left( x \right) + f^ \left( x \right) \right] . \]
\[\text{ Therefore, }\int\left( \frac{x - 1}{x^2} \right) e^x dx = \frac{1}{x} e^x + C\]
\[\text{ Hence,} f\left( x \right) = \frac{1}{x} .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 198]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 56 | Page 198

RELATED QUESTIONS

Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "x" * "e"^"2x"` dx


`int cos sqrtx` dx = _____________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int 1/(sinx.cos^2x)dx` = ______.


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×