Advertisements
Advertisements
Question
Solution
\[\int\left( \frac{x - 1}{x^2} \right) e^x dx = \int\left( \frac{x}{x^2} - \frac{1}{x^2} \right) e^x dx\]
\[ = \int\left( \frac{1}{x} - \frac{1}{x^2} \right) e^x dx\]
\[\text{ Consider,} f\left( x \right) = \frac{1}{x},\text{ then f}^ \left( x \right) = - \frac{1}{x^2}\]
\[\text{ Thus , the given integrand is of the form e}^x \left[ f\left( x \right) + f^ \left( x \right) \right] . \]
\[\text{ Therefore, }\int\left( \frac{x - 1}{x^2} \right) e^x dx = \frac{1}{x} e^x + C\]
\[\text{ Hence,} f\left( x \right) = \frac{1}{x} .\]
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "x" * "e"^"2x"` dx
`int cos sqrtx` dx = _____________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int 1/(sinx.cos^2x)dx` = ______.
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`