English

Write a Value of ∫ E Log S I N X Cos X D X - Mathematics

Advertisements
Advertisements

Question

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]
Sum

Solution

Let Ielog sin x . cos x dx 

\[\int\] sin x × cos x dx            \[\left( \because e^{log \text{ a} }= a \right)\]
Let sin t
⇒​ cos x dx = dt
\[\therefore I\]\[\int\] t . dt

\[= \frac{t^2}{2} + C\]
\[ = \frac{\sin^2 x}{2} + C \left( \because t = \sin x \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 11 | Page 197

RELATED QUESTIONS

Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

`int 1/("x" log "x")`dx


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


`int x^2/sqrt(1 - x^6)` dx = ________________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int cos sqrtx` dx = _____________


`int sqrt(1 + sin2x)  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int(5x + 2)/(3x - 4) dx` = ______


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate `int(1 + x + x^2/(2!))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×