English

Integrate the following functions w.r.t. x : 12+3tanx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`

Sum

Solution

Let I = `int (1)/(2 + 3tanx).dx`

= `int(1)/(2 + 3(sinx/cosx)).dx`

= `int cosx/(2cosx + 3sinx).dx`
Put,

Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`

∴ cos x = `"A"(2cosx + 3 sinx ) + "B"[d/dx(2cos x + 3 sin x)]`

= A(2 cos x + 3 sin x) + B(– 2 sin x + 3 cos x)

∴ cos x = (2A + 3B)cos x + (3A – 2B)sin x
Equating the coefficients of cos x sin x on both the sides, we get
2A  3B = 1          ...(1)
and
3A – 2B = 0      ...(2)
Multiplying equation (1) by 22 and equation (2) by 3, we get
4A +6B = 2
9A – 6B = 0
On adding, we get
13A = 2
∴ A = `(2)/(13)`

∴ from (2), 2B = 3A = `3(2/13) = (6)/(13)`

∴ B = `(3)/(13)`

∴ cos x = `(2)/(13)(2cosx + 3sinx) + (3)/(13)(-2sinx +  3cosx)`

∴ I = `int[(2/13(2cosx + 3sinx) + 3/13(-2 sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `int[2/13 + (3/13(-2sinx + 3cosx))/(2cosx + 3sinx)].dx`

= `(2)/(13) 1 dx + (3)/(13) int (-2sinx + 3cosx)/(2cosx + 3sinx).dx`

= `(2)/(13)x + (3)/(13)log|2cos x + 3sinx| + c.     ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(7 + 6"x" - "x"^2)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int x^2/sqrt(1 - x^6)` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int 1/(xsin^2(logx))  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int x^3"e"^(x^2) "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int x^3 e^(x^2) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×