Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Solution
Let I = `int (1)/(2 + 3tanx).dx`
= `int(1)/(2 + 3(sinx/cosx)).dx`
= `int cosx/(2cosx + 3sinx).dx`
Put,
Numerator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ cos x = `"A"(2cosx + 3 sinx ) + "B"[d/dx(2cos x + 3 sin x)]`
= A(2 cos x + 3 sin x) + B(– 2 sin x + 3 cos x)
∴ cos x = (2A + 3B)cos x + (3A – 2B)sin x
Equating the coefficients of cos x sin x on both the sides, we get
2A 3B = 1 ...(1)
and
3A – 2B = 0 ...(2)
Multiplying equation (1) by 22 and equation (2) by 3, we get
4A +6B = 2
9A – 6B = 0
On adding, we get
13A = 2
∴ A = `(2)/(13)`
∴ from (2), 2B = 3A = `3(2/13) = (6)/(13)`
∴ B = `(3)/(13)`
∴ cos x = `(2)/(13)(2cosx + 3sinx) + (3)/(13)(-2sinx + 3cosx)`
∴ I = `int[(2/13(2cosx + 3sinx) + 3/13(-2 sinx + 3cosx))/(2cosx + 3sinx)].dx`
= `int[2/13 + (3/13(-2sinx + 3cosx))/(2cosx + 3sinx)].dx`
= `(2)/(13) 1 dx + (3)/(13) int (-2sinx + 3cosx)/(2cosx + 3sinx).dx`
= `(2)/(13)x + (3)/(13)log|2cos x + 3sinx| + c. ...[∵ int (f'(x))/f(x)dx = log|f(x)| + c]`
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Write a value of
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int x^2/sqrt(1 - x^6)` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int 1/(xsin^2(logx)) "d"x`
`int (cos2x)/(sin^2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int x^3"e"^(x^2) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `intsinx/(sinx - cosx)dx` equals ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`