Advertisements
Advertisements
Question
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Solution
Let I = `int (3"x"^3 - 2sqrt"x")/"x"` dx
`= int ("3x"^3/"x" - "2x"^(1/2)/"x")` dx
`= int (3"x"^2 - 2"x"^(-1/2))` dx
`= 3 int "x"^2 * "dx" - 2 int "x"^(-1/2) * "dx"`
`= 3 ("x"^3/3) - 2("x"^(1/2)/(1/2))` + c
∴ I = x3 - 4`sqrt"x"` + c
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`sin x/(1+ cos x)`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int cos^2x.dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x/(x + 2) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Write `int cotx dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).