Advertisements
Advertisements
Question
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Options
`2sqrt(1 - "x") + "c"`
- `2sqrt(1 - "x") + "c"`
`sqrt"x"` + c
x + c
Solution
- `2sqrt(1 - "x") + "c"`
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following functions w.r.t. x : sin4x.cos3x
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int cot^2x "d"x`
`int secx/(secx - tanx)dx` equals ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int 1/(x(x-1)) dx`