Advertisements
Advertisements
Question
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Solution
`Let I =int1/(x^2sqrt(a^2+x^2)dx`
`Put x = a tantheta`
Differentiating w.r.t. theta we get
`dx = a sec^2 theta d theta`
`theta=tan^-1(x/a)`
`I=int(asec^2theta d theta)/(a^2tan^2thetasqrt(a^2+a^2tan^2theta))`
`=1/a^2intsectheta/tan^2theta d theta`
`=1/a^2intcostheta/sin^2thetad theta`
`=1/a^2intcosecthetacotthetad theta`
`I=-1/a^2cosectheta+c ....(i)`
`But tantheta=x/a`
`cottheta`=a/x`
`cosec^2theta`=1+cot^2theta`
`cosec^2theta=1+a^2/x^2`
`cosec^2theta=(x^2+a^2)/x^2`
`cosectheta=sqrt(x^2_a^2)/x.........(ii)`
`I=-1/a^2sqrt(x^2+a^2)/x+c `
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`1/(1 - tan x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of
Write a value of
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
`int 1/(cos x - sin x)` dx = _______________
`int x^x (1 + logx) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int ("d"x)/(x(x^4 + 1))` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Write `int cotx dx`.
Find `int dx/sqrt(sin^3x cos(x - α))`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
`int x^3 e^(x^2) dx`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`