Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : tan5x
Solution
Let I = `int tan^5 x dx`
= `int tan^3x tan^2x dx`
= `int tan^3x (sec^2x - 1)dx`
= `int (tan^3x sec^2x - tan^3x)dx`
= `int (tan^3x sec^2x - tanx.tan^2x)dx`
= `int [tan^3x sec^2x - tanx (sec^2x - 1)]dx`
= `int (tan^3x sec^2x - tan x sec^2x + tanx)dx`
= `int[(tan^3x - tanx)sec^2x + tanx]dx`
= `int(tan^3x - tanx)sec^2x dx + inttan x dx`
= I1 + I2
In I1, put tan x = t
∴ sec2 x dx = dt
∴ I = `int (t^3 - t)dt + int tan x dx`
= `t^4/(4) - t^2/(2) + log|secx| + c`
= `tan^4x/(4) - tan^2x/(2) + log|secx| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Solve: dy/dx = cos(x + y)
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int (1)/(4 + 3cos^2x).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (log x)/(log ex)^2` dx = _________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x/(x + 2) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int (7x + 9)^13 "d"x` ______ + c
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int (cos x)/(1 - sin x) "dx" =` ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
`int "cosec"^4x dx` = ______.
`int 1/(sin^2x cos^2x)dx` = ______.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).