English

Integrate the following functions w.r.t. x : tan5x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : tan5x

Sum

Solution

Let I = `int tan^5 x  dx`

= `int tan^3x tan^2x dx`

= `int tan^3x (sec^2x - 1)dx`

= `int (tan^3x sec^2x - tan^3x)dx`

= `int (tan^3x sec^2x - tanx.tan^2x)dx`

= `int [tan^3x sec^2x - tanx (sec^2x - 1)]dx`

= `int (tan^3x sec^2x - tan x sec^2x + tanx)dx`

= `int[(tan^3x - tanx)sec^2x + tanx]dx`

= `int(tan^3x - tanx)sec^2x dx + inttan x dx`

= I1 + I2
In I1, put tan x = t
∴ sec2 x dx = dt
∴ I = `int (t^3 - t)dt + int tan x dx`

= `t^4/(4) - t^2/(2) + log|secx| + c`

= `tan^4x/(4) - tan^2x/(2) + log|secx| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int x/(x + 2)  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int (cos x)/(1 - sin x) "dx" =` ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


`int 1/(sin^2x cos^2x)dx` = ______.


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int(1 + x + x^2 / (2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×